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A random-phase-approximation semiclassical scheme for the description of plasmon excitations in large
metallic nanospheres, with a radius range of 10–60 nm, is developed in an all-analytical version, with inclusion
of irradiation phenomena. The spectrum of plasmons is determined for both surface- and volume-type excita-
tions. The various channels for the damping of surface plasmons are evaluated and a predominant role of the
irradiation losses is indicated for large metallic nanospheres, with radius greater than 10 nm. The damping-
caused plasmon resonance shifts are compared with the experimental data for metallic nanoparticles of differ-
ent sizes located in a dielectric medium or on the semiconductor substrate. The strong enhancement of energy
transfer from the surface plasmon oscillations to the semiconductor substrate is explained in the regime of a
near-field coupling of surface plasmons with semiconductor electrons in agreement with recent experimental
observations for metallically surface-nanomodified photodiode systems.
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I. INTRODUCTION

Rapid progress in plasmonics1 �taking advantage of pecu-
liar properties of plasmon polaritons2 in nanostructured me-
tallic interfaces� and plasmonic applications in photonics and
microelectronics3 have focused attention on metallically
modified systems in nanoscale and on collective excitations
of metallic plasma in a confined geometry. Of particular in-
terest are the recently reported experimental data on giant
enhancement of photoluminescence and absorption of light
by semiconductor surfaces �of photodiodes� covered with
metallic �gold, silver, or copper� nanospheres with sphere
radii of the order of several to several tens of nanometers.4–9

These phenomena are recognized as promising for the en-
hancement of the efficiency of solar cells by the application
of special metallic nanoparticle coverings of photoactive
layers.4,5 Metallic nanospheres �or nanoparticles of other
shape� can act as light converters, collecting energy of inci-
dent photons in surface plasmon oscillations. This energy can
be next transferred to the semiconductor substrate in a more
efficient manner in comparison to the direct photoeffect.

The experimental observations4–9 suggest that the short
range coupling between plasmons in nanospheres and elec-
trons in the semiconductor substrate allows for significant
growth of selective light energy transformation into a photo-
current in the diode system. This phenomenon is not de-
scribed in detail as of yet; moreover, some competitive
mechanisms apparently contribute, manifesting themselves
in the strong sensitivity of the effect to the size and shape of
the metallic nanocomponents, the type of the material and
the dielectric coverings of the nanoparticles.9,10 Neverthe-
less, one can argue generally that due to the nanoscale size of
the metallic components, the momentum is not conserved,
which leads to the allowance of all indirect optical interband
transitions in the semiconductor layer, resulting in enhance-
ment of the photocurrent in comparison to the ordinary
photoeffect when only direct interband transitions are admit-
ted.

Since the surface plasmons play a central role in the me-
tallically modified photocell structures, the recognition of
these excitations in nanoparticles is important. The surface
plasmons were originally considered by Mie,11 who provided
a classical description of oscillations of electrical charge on
the surface of the metallic sphere within the electron-gas
model. The classical Mie frequencies are not dependent on
the sphere radius, in contrast to the experimental observa-
tions for both small metallic clusters and larger spheres.

Plasmon excitations in small metallic clusters have been
the subject of wide analyses12–20 within various attitudes tak-
ing into account quantum effects. There were mostly numeri-
cal calculations “ab initio,” including the shell-model and the
Kohn-Sham “local density approximation,” similar to that
applied in chemistry for large molecule calculations, limited,
however, to a few hundreds of electrons.12,14–16,18 In descrip-
tion of metallic clusters the “jellium” model was commonly
adopted, allowing for an adiabatic approach to the back-
ground ion system. In the jellium model, all the kinetics
concerns the electron liquid screened by the static and uni-
form positive background of the ions.12,21–23 Also variational
methods for energy density and the random-phase-
approximation �RPA� numerical summations �e.g., for clus-
ters of Na with radius �1 nm� �Ref. 24� as well as various
semiclassical expansion methods13,16,17 were applied. The
emerging of the Mie response from the more general behav-
ior was presented.12,14,24 Numerical analyses using time-
dependent local density approximation �TDLDA�, widely ap-
plied to small clusters up to N=200 �e.g., Refs 12, 14, and
16�, revealed the redshift of Mie resonance mainly due to
so-called spill-out of the electron cloud beyond the jellium
rim.

The problem of plasmon oscillations in metallic clusters
was also analyzed employing analytical formulations of the
Thomas-Fermi-type approach �e.g., by Kresin13 or more re-
cently within semiclassical expansion and the separation of
mass center and relative electron dynamics16� but without,
however, including the damping of surface plasmon oscilla-
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tions due to radiation losses and addressing rather small sys-
tems �up to approximately 200 atoms, i.e., at most 2.5 nm for
the radius16�. For small clusters the damping of surface plas-
mons due to scattering and the decay into particle-hole pairs
�Landau damping� were included,15,17 both important rather
for small clusters �scattering-induced resonance shift scales
as inverse of radius and Landau damping is limited to a
radius range up to 2.5 nm�.16,17

In the range of cluster dimensions 1–2 nm the experimen-
tally observed redshift of Mie frequency was described
mainly by the spill-out effect �with corrections due to the
scattering and Landau damping�, which is pronounced in
small nanocrystals and causes a redshift due to reducing of
the electron density �Mie frequency is proportional to the
square of the density�.13,14,16 However, for dimensions above
only a few nanometers, the lowering of electron density
caused by spill-out is on the order of single percent or
smaller13 and thus for higher nanosphere dimensions �on the
order of a few tens of nm� is unimportant �the resonance
frequency shift caused by spill-out is proportional to the in-
verse radius of a metallic sphere, as a surface-type effect, and
thus diminishes with radius growth�. In large nanospheres
experimentally observed redshift of resonance is far bigger
than this one which would correspond to spill-out including
scattering and Landau damping and, moreover, significantly
grows with nanoparticle size,7 oppositely to redshift for
small clusters. Thus other effects should be taken into ac-
count and their identification and explanation of different
behavior patterns of plasmon resonance in large nanospheres
is a purpose of the present paper.

The other quantum effects, such as magic electron num-
bers, related with closed shells for a confined system13,14 also
correspond to small clusters �for review cf. Ref. 12�. Due to
shell effect for ultrasmall clusters electron collective excita-
tions are strongly coupled between volume and surface and
also with background ionic system oscillations. The emerg-
ing of a well-formed volume plasmon for �0.5 nm radius
was demonstrated,12,14 while for smaller clusters, the separa-
tion of surface and volume excitations is impossible �calcu-
lations were ranged to l=1 dipole mode14�. With the growth
of the cluster radius the situation changes and both types of
collective excitations �translational and compressional, ad-
dressed to surface and volume oscillations, respectively� can
be separated �they finally have strongly different frequen-
cies�. For nanosphere radii �10 nm one can thus safely as-
sume that the surface and volume plasmon modes are decou-
pled and well defined. Note, that useful notions of volume
and surface oscillations were also applied in the case of
nuclear matter vibrations of compressional type25,26 and of
translational type,27 respectively, which were then important
in understanding of the giant nuclear dipole resonance
experiments.

In the present paper we develop the RPA semiclassical
method, originally formulated by Bohm and Pines for bulk
metal,28,29 in order to describe electron collective excitations
in large metallic nanospheres, with a radius range of 10–60
nm �much larger than the Thomas-Fermi radius being on the
order of interparticle separation�, including both volume and
surface types of plasmons in the framework of an all-
analytical calculus. We pay a special attention to inclusion of

radiation losses and resulting plasmon damping, which turns
out to be a predominant mechanism of resonance shift in the
case of large nanosphere size. This is beyond the other RPA
semiclassical analyses previously addressed rather to smaller
clusters, for which irradiation effects were unimportant.13

In the next section, the RPA equations for a local electron
density are derived, including conditions imposed by the fi-
nite geometry of the nanosphere �for particularities of the
solution method cf. also Ref. 30�. The metal is assumed as a
so-called “simple metal,” i.e., allowing for the description of
the electron-ion interaction by a local and not strong pseudo-
potential �this condition is satisfied, e.g., for noble, alkali, or
transition metals�.28 In the following section, the spectra of
surface and volume plasmons for the metallic nanosphere are
presented, along with their modifications by the dielectric
medium in which the metallic sphere can be embedded. The
e-m response of the dielectric medium with metallic nano-
sphere subsystem is analyzed in the case of the dipole type
�l=1� excitation, including modifications caused by
irradiation-induced plasmon damping, resulting in a strong
dependence of the resonance energy shift on the nanosphere
radius, as was experimentally observed for large
nanospheres.7 Various channels of plasmon damping are con-
sidered, including radiation losses in far-field and near-field
regimes �with calculus particularities shifted to Appendices
A and B, respectively�, and the resulting resonant spectrum
modification is compared with experimentally measured de-
pendence of emission and absorption rates on the sphere
radius7 and dielectric coating.9,10 The giant strengthening of
a coupling in the near-field regime of surface plasmons with
a semiconductor substrate is described in agreement with the
experimental data for the enhancement of a photocurrent in
metallically nanomodified diode systems.4–9

II. RPA SEMICLASSICAL APPROACH TO ELECTRON
DISTRIBUTION IN A METALLIC NANOSPHERE

A. Derivation of RPA equation for local electron density
in a confined geometry

Let us consider a metallic sphere with radius a located in
a vacuum, �=1, �=1. We assume that the interaction be-
tween electrons and ions is described by a local and weak
pseudopotential �this condition corresponds to the so-called
simple metal case�,28 as e.g., for noble metals; of a particular
significance are gold, silver, and also copper nanoparticles
due to the strong visible-light plasmon resonances in these
materials. The Hamiltonian for this system has the form

Ĥ = − �
�=1

N
�2��

2

2M
+

1

2 �
����

u�R� − R��� − �
j=1

Ne �2� j
2

2m

+
1

2 �
j�j�

e2

�r j − r j��
+ �

�,j
w�R� − r j� , �1�

where R�, r j and M, m are the positions and masses of the
ions and electrons, respectively; N is the number of ions in
the sphere, Ne=ZN is the number of collective electrons,
u�R�−R��� is the interaction of ions �ion is treated as a
nucleus with electron core of closed shells�, and w�R�−r j� is
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the local pseudopotential of electron-ion interaction. Assum-
ing the jellium model12,21,22 one can write for the background
ion charge uniformly distributed over the sphere: ne�r�
=ne��a−r�, where ne=Ne /V and ne�e� is the averaged posi-
tive charge density, V= 4�a3

3 is the sphere volume, and � is
the Heaviside step function. Then, neglecting ion dynamics
and small electron-ion pseudopotential �shifted by jellium
and electron interaction�, the collective electrons can be de-
scribed by the Hamiltonian

Ĥe = �
j=1

Ne �−
�2� j

2

2m
− e2� ne�r�d3r

�r j − r� � +
1

2 �
j�j�

e2

�r j − r j��
�2�

with corresponding electron wave function 	e�t�.
A local electron density can be written as follows:28,29


�r,t� = 		e�t���
j

��r − r j��	e�t�
 �3�

with the Fourier picture


̃�k,t� =� 
�r,t�e−ik·rd3r = 		e�t��
̂�k��	e�t�
 , �4�

where the “operator” 
̂�k�=� je
−ik·rj.

Using the above notation one can rewrite Ĥe in the fol-
lowing form, in an analogy to the bulk case:28,29

Ĥe = �
j=1

Ne �−
�2� j

2

2m
� −

e2

�2��3� d3kñe�k�
2�

k2 �
̂+�k� + 
̂�k��

+
e2

�2��3� d3k
2�

k2 �
̂+�k�
̂�k� − Ne� , �5�

where: ñe�k�=
d3rne�r�e−ik·r and 4�

k2 =
d3r 1
r e−ik·r.

Utilizing this form of the electron Hamiltonian one can
write out

d2
̂�k�
dt2 =

1

�i��2 ��
̂�k�,Ĥe�,Ĥe� �6�

in the following form:

d2
̂�k�
dt2 = − �

j

e−ik·rj�−
�2

m2 �k · � j�2 +
�2k2

m2 ik · � j +
�2k4

4m2�
−

4�e2

m�2��3� d3qñe�q�
k · q

q2 
̂�k − q�

−
4�e2

m�2��3� d3q
̂�k − q�
k · q

q2 
̂�q� . �7�

If one takes into account that 
̂�k−q�
̂�q�=�
̂�k−q��
̂�q�
+ ñe�k−q��
̂�q�+�
̂�k−q�ñe�q�+ ñe�k−q�ñe�q� and ñe�q�
̂�k
−q�= ñe�q��
̂�k−q�+ ñe�q�ñe�k−q�, where �
̂�k�= 
̂�k�
− ñe�k� describes the operator of local electron density fluc-
tuations above the uniform distribution, one can rewrite Eq.
�7� in the form

d2�
̂�k�
dt2 = − �

j

e−ik·rj�−
�2

m2 �k · � j�2 +
�2k2

m2 ik · � j +
�2k4

4m2�
−

4�e2

m�2��3� d3qñe�k − q�
k · q

q2 �
̂�q�

−
4�e2

m�2��3� d3q�
̂�k − q�
k · q

q2 �
̂�q� . �8�

Thus for the electron density fluctuation, �
̃�k , t�
= 		e��
̂�k , t��	e
= 
̃�k , t�− ñe�k�, we find

�2�
̃�k,t�
�t2 = − 		e��

j

e−ik·rj�−
�2

m2 �k · � j�2 +
�2k2

m2 ik · � j

+
�2k4

4m2��	e
 −
4�e2

m�2��3� d3qñe�k − q�

�
k · q

q2 �
̃�q,t� −
4�e2

m�2��3� d3q
k · q

q2

�		e��
̂�k − q��
̂�q��	e
 . �9�

Within the semiclassical approximation three components of
the first term on the right-hand side of Eq. �9� can be esti-
mated as: k2vF

2�
̃�k , t�, k3vF /kT�
̃�k , t�, and k4vF
2 /kT

2�
̃�k , t�,
respectively �1 /kT is the Thomas-Fermi radius,28 kT

=�6�nee
2


F
, 
F is the Fermi energy, and vF is the Fermi veloc-

ity�. The contributions of the second and third components of
the first term can be neglected in comparison to the first
component. Small and thus negligible is also the third term
in the right-hand side of Eq. �9�, as involving a product of
two �
̃ �which we assumed small, �
̃ /ne�1�. This approach
corresponds to the RPA attitude formulated for bulk
metal28,29 �note that �
̂�0�=0 and the coherent RPA contri-
bution of interaction is comprised by the last but one term in
Eq. �9��.

Within the RPA, Eq. �9� thus attains the form

�2�
̃�k,t�
�t2 =

2k2

3m
		e��

j

e−ik·rj
�2� j

2

2m
�	e
 −

4�e2

m�2��3

�� d3qñe�k − q�
k · q

q2 �
̃�q,t� , �10�

where for the case of spherical symmetry

		e��
j

e−ik·rj
�2

m2 �k · � j�2�	e
 �
2k2

3m
		e��

j

e−ik·rj
�2� j

2

2m
�	e
 .

In the position representation Eq. �10� can be rewritten in the
following manner:

�2�
̃�r,t�
�t2 = −

2

3m
�2		e��

j

��r − r j�
�2� j

2

2m
�	e
 +

�p
2

4�
�

����a − r� �� d3r1
1

�r − r1�
�
̃�r1,t�� . �11�

The Thomas-Fermi averaged kinetic energy can be repre-
sented as follows:28
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		e� − �
j

��r − r j�
�2� j

2

2m
�	e


�
3

5
�3�2�2/3 �2

2m
�
�r,t��5/3

=
3

5
�3�2�2/3 �2

2m
ne

5/3��a − r��1 +
5

3

�
̃�r,t�
ne

+ . . .� . �12�

Note that here neglected gradient terms �in particular, the
von Weizsäcker term, ���
�2 / �4
�, beyond the Thomas-
Fermi formula for kinetic-energy functional �
5/3�12

strongly affect the finite system properties especially of small
metallic clusters. The contribution of this particular term
�von Weizsäcker� depends on the approximation in various
versions of corrections to the Thomas-Fermi approach13 �the
coefficient of von Weizsäcker term is treated even as a con-
venient fitting parameter�. The gradient terms are included,
in an inexplicit manner, in TDLDA-type methods based on
the Kohn-Sham equation. As follows from the respective
analyses, the contributions related to these terms �mostly the
spill-out effect� are more important for small clusters �when
the surface dominates� and gradually diminish with the
growth of the nanosphere radius.12–14,16,17

Taking then into account that ���a−r�=− r
r��a−r�, one

can rewrite Eq. �11� in the following manner:

�2�
̃�r,t�
�t2 = �2

3


F

m
�2�
̃�r,t� − �p

2�
̃�r,t����a − r�

−
2

3m
� ��3

5

Fne + 
F�
̃�r,t�� r

r
��a − r��

− �2

3


F

m

r

r
� �
̃�r,t�

+
�p

2

4�

r

r
�� d3r1

1

�r − r1�
�
̃�r1,t����a − r� .

�13�

In the above formula �p is the bulk plasmon frequency, �p
2

=
4�nee

2

m . The solution of Eq. �13� can be decomposed into
two parts related to the distinct domains

�
̃�r,t� = ��
̃1�r,t� for r � a

�
̃2�r,t� for r � a, �r → a+�
� �14�

corresponding to the volume and surface excitations, respec-
tively. These two parts of local electron-density fluctuations
satisfy the equations �according to Eq. �13��

�2�
̃1�r,t�
�t2 =

2

3


F

m
�2�
̃1�r,t� − �p

2�
̃1�r,t� �15�

and �here 
=0+�

�2�
̃2�r,t�
�t2 = −

2

3m
� ��3

5

Fne + 
F�
̃2�r,t�� r

r
��a + 
 − r��

− �2

3


F

m

r

r
� �
̃2�r,t�

+
�p

2

4�

r

r
�� d3r1

1

�r − r1�
��
̃1�r1,t���a − r1�

+ �
̃2�r1,t���r1 − a�����a + 
 − r� . �16�

The Dirac delta in Eq. �13� results due to the derivative of
the Heaviside step function—ideal jellium charge distribu-
tion. In Eq. �16� an infinitesimal shift, 
=0+, is introduced to
fulfill requirements of the distribution delta definition �its
singular point has to be an inner point of an open subset of
the domain�. This shift is only of a formal character and does
not reflect any asymmetry. Some kind of asymmetry is, how-
ever, caused by the last term in Eq. �13�, the gradient-type
term, which describes the electric field induced by electron
fluctuations. The electric field due to surface charges is zero
inside the sphere and therefore cannot influence the volume
excitations. Oppositely, the volume charge fluctuation-
induced electric field can excite the surface fluctuations. This
asymmetry is visible by comparison of Eqs. �15� and �16�,
for volume and surface plasmons, respectively.

In the semiclassical approach the domain of the surface
charge fluctuations is extremely narrow �surface only�. For
the fuzzy surface, as for small clusters with spill-out, the
surface charge fluctuations encompass a widened domain be-
low and above the jellium rim. This results in mutual cou-
pling of volume and surface plasmons in ultrasmall clusters
�N�60�.12,14 Within the semiclassical approach, volume
plasmons described by Eq. �15� are independent of the sur-
face plasmons, though the latter can be excited by the former
ones, due to the last term in Eq. �16� �which is caused by
electric field induced by volume charge fluctuations, while
oppositely, surface charge oscillations do not influence inside
of the sphere�. This expresses a coupling between surface
and volume plasmons in large metallic nanospheres within
the semiclassical RPA approach.

B. Solution of RPA equations: Volume and surface
plasmon frequencies

Equations �15� and �16� can be solved upon imposed
boundary and symmetry conditions. Let us represent both
parts of the electron fluctuation in the following manner:

�
̃1�r,t� = ne�f1�r� + F�r,t��, for r � a ,

�
̃2�r,t� = nef2�r� + ���,t���r + 
 − a�, 
 = 0 + ,

for r � a, �r → a+� �17�

and now let us choose the convenient initial conditions,
F�r , t� �t=0=0, ��� , t� �t=0=0, �� is the spherical angle�,
moreover �1+ f1�r�� �r=a= f2�r� �r=a �continuity condition�,
F�r , t� �r→a=0, 

�r , t�d3r=Ne �neutrality condition�.
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We arrive30 thus with the explicit form of the solutions of
Eqs. �15� and �16�

f1�r� = −
kTa + 1

2
e−kT�a−r�1 − e−2kTr

kTr
, for r � a ,

f2�r� = �kTa −
kTa + 1

2
�1 − e−2kTa�� e−kT�r−a�

kTr
, for r � a ,

�18�

where kT=�6�nee
2


F
=�3�p

2

vF
2 . For the time-dependent parts of

the electron fluctuations we find

F�r,t� = �
l=1

�

�
m=−l

l

�
n=1

�

Almnjl�knlr�Ylm���sin��nlt� �19�

and

���,t� = �
l=1

�

�
m=−l

l
Blm

a2 Ylm���sin��0lt�

+ �
l=1

�

�
m=−l

l

�
n=1

�

Almn

�l + 1��p
2

l�p
2 − �2l + 1��nl

2 Ylm���ne

��
0

a

dr1
r1

l+2

al+2 jl�knlr1�sin��nlt� , �20�

where jl���=� �
2� Il+1/2��� is the spherical Bessel function,

Ylm��� is the spherical function, �nl=�p�1+
xnl

2

kT
2a2 are the fre-

quencies of electron volume self-oscillations �volume plas-
mon frequencies�, xnl are the nodes of the Bessel function
jl���, and knl=xnl /a and �0l=�p

� l
2l+1 are the frequencies of

electron surface self-oscillations �surface plasmon frequen-
cies�.

From the above equations it follows thus that the local
electron density �within RPA attitude� has the form


�r,t� = 
0�r� + 
neq�r,t� , �21�

where the RPA equilibrium electron distribution is �correct-
ing the uniform distribution ne�


0�r� = �ne�1 + f1�r�� for r � a

nef2�r� for r � a, r → a+
� �22�

and the nonequilibrium, of plasmon oscillation type, is


neq�r,t�

= �neF�r,t� for r � a

���,t���a + 
 − r� 
 = 0 + , for r � a, r → a + .
�

�23�

The function F�r , t� displays volume plasmon oscillations
while ��� , t� describes the surface plasmon oscillations. Let
us emphasize that in the formula for ��� , t�, Eq. �20�, the
first term corresponds to surface self-oscillations, while the
second term describes the surface oscillations induced by the

volume plasmons. The frequencies of the surface self-
oscillations are

�0l = �p� l

2l + 1
, �24�

which, for l=1, agrees with the dipole-type surface oscilla-
tions described originally by Mie,11 �01=�p /�3.

In order to account for the influence of dielectric sur-
roundings on the surface plasmons in the metallic nano-
sphere, let us assume that electrons on the surface �r=a+,
i.e., r�a , r→a� interact with Coulomb forces renormalized
by the relative dielectric constant ��1. Thus instead of Eq.
�16� one can consider its modification with the factor 1

� in the
last its term �Eq. �15� remains unchanged�. The solution of
such modified equation is of the same form as that for the
Eq. �16� case but it has the new surface plasmon frequencies

�0l = �p� l

2l + 1

1

�
. �25�

The frequency of surface electron self-oscillations, changed
by the factor �1

� , can be reduced significantly in comparison
to the vacuum case, as in many materials � is relatively big
�� corresponds to its high-frequency limiting value, the same
one that is involved in a refraction coefficient�. This surface
plasmon frequency given by Eq. �25� does not reproduce, for
the dipole case l=1, the classical Mie formula,19,22,31

�p
1

�2�+1
. It is lower than the Mie one, which corresponds, to

some extent, with the data indicated in Fig. 3 in Ref. 19, in
which there are presented resonance frequencies obtained
within a more thorough �TDLDA� method for potassium
clusters �with N�200�, and they are also located below cor-
responding classical Mie values. The red shift of TDLDA
frequencies is, however, caused mainly by spill-out for ultr-
asmall clusters and only additionally by the dielectric con-
stant of surrounding material �though this latter contribution
is also important in comparison to classical electrostatic
screening—cf. Fig. 1 in Ref. 19�. For larger nanospheres
�when spill-out is small� one may expect, however, the di-
electric mish-mash-induced redshift to be closer to the RPA
semiclassical one �Eq. �25��, as diminishing spill-out results
in a narrowing domain of surface oscillations.

III. EVALUATION OF A DAMPING RATE FOR
SURFACE PLASMONS

The RPA semiclassical Eqs. �15� and �16� for plasmon
excitations reveal the form of the oscillator-equation type.
Thus, it is easy to include, in a phenomenological manner,
the attenuation of these excitations via a damping term
2

��i�

�
i�r,t�
�t , which can be added to the left-hand sides of Eqs.

�15� and �16� �assuming that the volume modes, i=1, and the
surface modes, i=2, are damped with the attenuation times
��i�, respectively�. Thus, the time-dependent solution of such
a modified Eq. �15� attains the form as given by Eq. �19�
with the factor e−t/��1�

and shifted frequency �nl�
=��nl

2 − 1
���1��2 , for the volume modes. Similarly for the sur-

face plasmons �Eq. �16��, the attenuation leads to the factor
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e−t/��2�
for the first part of the solution �20� �and the simulta-

neously shifted frequency �0l� =��0l
2 − 1

���2��2 � while the second

term of Eq. �20� acquires an additional factor e−t/��1�
�and the

shifted frequency, �0l� =��nl
2 − 1

���1��2 �.
Let us concentrate on the damping of surface plasmons

described by 1
��2� . The interaction with phonons, electrons,

and lattice defects contribute to the relaxation rate 1
��2� with

1
�1

�2� , which is determined by the mean free path of electrons
in the nanosphere, reduced additionally in comparison to the
bulk case by inelastic scatterings with the sphere surface.
One can use the estimation32 1

�1
�2� � vF

�B
+

CvF

a , where vF is the
Fermi velocity, �B is an effective value of the mean-free
path, C is a constant of order 1, and a is the nanosphere
radius �for Ag, vF=1.4�106 m /s, �B�57 nm, which for
a=25 nm gives 1

�1
�2� =8�1013 s−1, while rather a femtosec-

ond decay time agrees with the measurements on Ag
nanoparticles33�. Note that the decomposition of surface plas-
mons due to the creation of particle-hole pairs �Landau
damping�15,17 is efficient only for small clusters.17

Another type of energy dissipation can be associated with
the radiation decay. The far-field radiation �i.e., for distances
much longer than the wavelength ��a� gives the contribu-
tion to the relaxation 2

�2
�2� � 2e2

3mc3 �1
2�1.6�108 s−1 �for �1

�5�1015 s−1� per single electron due to the Lorentz
friction.34 If one multiplies it by the electron number Ne

= 4�a3

3 ne, ne=
m�p

2

4�e2 �in order to account for the probability of
energy transfer from the total system�, one can arrive at the
value 1

�2
�2� =�1

1
3 �

�pa
�3c

�3, which dominates over 1
�1

�2� for not too
small spheres.22,23,33 This channel of plasmon energy dissi-
pation allows for explanation of the surface plasmon oscilla-
tions behavior with growing a �as 1

�2
�2� scales as a3� for nano-

spheres embedded in a dielectric medium �like in the water,
as is presented in Table I for nanoparticles of gold�. The
more precise derivation of the far-field radiation losses ex-
pressed by 1

�2
�2� is presented in Appendix A, leading to the

same formula for 1
�2

�2� as given above. Note that if the attenu-
ation rate �1�2

�2� is closer to 1, then the attenuation-induced
shift of the self-frequency is greater, ��=�1

�1− ��1�2
�2��−2

and this behavior coincides with the experimental
observations6,7 �for 1

�1�2
�2� �1 the overdamped regime is at-

tained without free plasmon oscillations�.
For Au, ��p=8.57 eV and the surface plasmon energy

��1=2.87 eV. This value of ��1 is estimated assuming a
coincidence of theoretically predicted self-frequency shifted
by attenuation with experimentally measured values for a
=50 nm; note that the discrepancy between the experimental

redshift and the theoretical one grows for smaller a, which is
probably caused by the strengthening of the impact of 1

�1
�2�

�1 /a at smaller a, resulting in a decrease in the redshift in
comparison to its value caused by 1

�2
�2� �a3. This tendency at

decreasing radius a seems to also be confirmed by measure-
ments for silver clusters with small dimensions �10 nm,
which was reported in Refs. 35 and 36.

Note that for small metallic clusters, the quantum spill-out
of the electron cloud beyond positive jellium causes a red-
shift of resonance Mie frequency lowering, although, with
radius growth �thus it is in fact a blueshift with radius
growth�, oppositely to the irradiation-induced shift described
above for larger nanospheres. The additional effect of polar-
ization of the ionic system �this effect is beyond the jellium
model� can lead to a similar inverse frequency shift, albeit
rather small. Jellium oscillation corrections �of phonon type�,
included in the effective time rate for damping via the effec-
tive mean-free path �B, are rather significant only for small
systems12,14 �for summaries of the various effects causing
redshift and blueshift of resonance with radius growth, cf.
also Ref. 37�. Thus, for the sphere radius range, 10–60 nm,
the radiation losses cause an overwhelming contribution to
damping and to the resulting redshift of the surface plasmon
resonance, cf. Fig. 1. In this figure the comparison of damp-
ing contributions due to the scattering effects, � vF

�B
+

vF

a and
due to the radiation losses in the dielectric surroundings,
�a3, are presented. For a�10 nm the latter channel clearly
dominates. The radiation-caused redshift strongly grows with
the radius of the nanosphere similarly as is observed in the
experiment for the range of sphere radii from 25 to 50 nm
�for Au�.7

The next source of the attenuation of surface plasmons
would be connected with the transport of dipole oscillation
energy between nanoparticles due to the Förster-type
coupling32 in the case of sufficiently dense location of the
metallic nanoparticles. Nevertheless, taking into account that
for a uniform nanoparticle distribution in the dielectric me-
dium, the same energy rates simultaneously escape and ar-
rive at a particular nanosphere due to interactions with other
nanospheres �nearest-neighbors�, this coupling does not con-
tribute to the relaxation time �at least for uniformly distrib-
uted metallic nanocomponents�.

The situation significantly changes, however, if metallic
nanoparticles are deposited on the surface of the semicon-
ductor substrate. Then the near-field e-m energy transfer
from oscillating dipoles �surface plasmons with l=1� to the
electrons in substrate semiconductor starts to be the domi-
nant channel of surface plasmon dissipation. The correspond-
ing time rate can be estimated by the Fermi golden rule ap-
plied to the system of plasmons coupled in the near-field

TABLE I. Comparison with experimental data �Ref. 7� for Au nanospheres in water.

Nanosphere radius a 50 nm 40 nm 25 nm

Attenuation rate due to far-field radiation losses �1�2
�2� 1.51 2.95 12.09

Shifted self-frequency rate ��
�1

=�1− ��1�2
�2��−2 0.75 0.94 0.99

Redshifted oscillation energy ��� �theor.� 2.16 eV 2.70 eV 2.87 eV

Redshifted oscillation energy ��� �exper.� 2.16 eV 2.26 eV 2.36 eV
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zone with the semiconductor substrate. One can consider two
situations: the first one, in which the external electric field is
rapidly switched off, which excites surface plasmons, gradu-
ally �with lowering amplitude of oscillations� transferring
next energy to the semiconductor; and the second one, in
which there is a stationary state of plasmons �with constant
amplitude� with a mediating role of plasmons transferring
the entire energy of incident photons to the semiconductor.
The latter case corresponds thus to a stationary solution of a
driven and damped oscillator while the former one corre-
sponds to free damped oscillations. In both cases the damp-
ing rate is the same, as it corresponds to the same substrate in
a near-field zone. For free damped oscillations the total ini-
tial oscillation energy �assessed in Appendix A� is gradually
lost with the time ratio 1

�3
�2� . This allows for calculation of the

1
�3

�2� , which is presented in Appendix B Utilizing a similar
calculus as in Appendix A, one can assess the value of the
corresponding damping rate 1

�3
�2� , assuming that the total en-

ergy loss of surface plasmons is transferred to the semicon-
ductor substrate with additional renormalization by a factor
� lowering an efficiency of this channel �� is a phenomeno-
logical factor introduced in order to account for the
geometry-induced proximity-type constraints imposed on the
dipole near-field coupling of the nanosphere with the under-
lying semiconductor layer�. Thus, it is sufficient to calculate
the energy income in the semiconductor due to the nano-
sphere near-field dipole coupling, as is done in Appendix B
�within the Fermi golden rule scheme�. For this channel of
surface plasmon energy dissipation we deal with the scaling
of the resonance energy shift with the dot radius, similar to
that for 1

�2
�2� , however, with a possible correction induced by �

dependence on a �it may be important, as for the nanosphere
located on the planar semiconductor surface one can use an
estimation ��c h2

a2 �10−3 �for a=50 nm�, where c is a con-
stant and h is an effective range of near-field coupling�. The
parameter � significantly grows in the case when the whole
nanosphere is in the near-field contact with the substrate, i.e.,
when the nanosphere is completely embedded in the semi-
conductor medium. For nanospheres deposited on the real
semiconductor surface, the parameter � is obtained through
fitting the experimental data �cf. Table II�.

Assuming stationary conditions �i.e., constant-in-time am-
plitude of the surface plasmon oscillations, which corre-
sponds to a balance of the incoming energy of incident pho-
tons with the energy outgoing to the semiconductor
substrate� the relevant damping is governed by the near-field
dipole interaction �for R��� expressed by the scalar
potential34 with an amplitude D0���

��R,t� =
1

�0R2n · D0���sin��t� . �26�

The matrix element of near-field dipole interaction for the
transition of a semiconductor electron from the state in the
valence to the conduction band, assumed as 	i�f��r , t�
= �2��−3/2exp�ik ·r− iEi�f��k�t /�� �i—initial and f—final, re-
spectively� is calculated in Appendix B, �Eq. �B5��, which
leads to a probability of transition per time unit,

�w =
e2�D0����2��mp

�mn
�

3�4�3�2�5�2 ��� − Eg� ,

where D0��� is the surface plasmon dipole oscillation ampli-
tude, adjusted to the balance of energy income and outcome

FIG. 1. Comparison of contributions to surface plasmon damping �upper curve� of the scattering term, � vF

�B
+

vF

a , and �far-field� radiation
loss-induced damping, �a3, Eq. �A10�, for large metallic nanospheres �Au and Ag�; for sphere radii larger than 10 nm irradiation-induced-
damping dominates �horizontal dashed line indicates 1013 level�.

TABLE II. Comparison with the experimental data �Ref. 7� for Au nanospheres on Si layer.

a
�nm�

ns

�108 /cm2� xm

�m=xm��1 �theor�
�eV�

��m �expt.�
�eV� ��xm� I�

I �xm�

50 0.8 0.772 2.09 2.25 0.84 1.55

40 1.6 0.951 2.58 2.48 3.00 1.9

25 6.6 0.997 2.71 2.70 49.42 1.75
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�via the shift of the resonance for stationary driven and
damped oscillations�.

Taking into account that the number of incident photons

in the volume V of a semiconductor equals
�E0

2V

8��� and that the
volume rate of metallic components is C0=Nm

4�a3

3V �Nm—the
number of nanospheres�, the probability that an energy of a
single incident photon is transferred to the semiconductor via
surface plasmons on metallic nanoadmixtures can be ex-
pressed as �with �w given by Eq. �B5��

qm = �Nm�w� �E0
2V

8���
�−1

=
�C0e2�f2���a3

8�6�4�
��mp

�mn
���� − Eg� , �27�

where f���=
�1

2

���1
2−�2�2+4�2/��3

�2��2
is the amplitude of forced sur-

face plasmon oscillations.
In order to assess efficiency of the near-field coupling

channel one can estimate the ratio of the probability of en-
ergy absorption in the semiconductor via mediation of sur-
face plasmons �per single photon incident on the metallic
nanospheres� to the energy attenuation in the semiconductor
directly from a planar wave illumination �also per single
photon�. In the latter case the energy attenuation in the semi-
conductor per single incident photon is given by the formula
for ordinary photoeffect, q= 2�2

3�6
e2�5/2

mp
�2���3 ���−Eg�3/2 �cf. e.g.,

Ref. 38�. The ratio
qm

q turns out to be of order of 104 �40
H�nm� �at

a typical surface density of nanoparticles, ns�108 /cm2�
which �including the phenomenological factor �, and H—the
semiconductor photoactive layer depth� is sufficient to ex-
plain the scale of the experimentally observed strong en-
hancement of absorption and emission rates. It should be
noted that 1

�3
�2� grows with � �cf. Eq. �B9�� and would attain

critical value for an overdamped oscillator � 1
�3

�2��1
=1�, which

precludes surface plasmon free oscillations.
Very high efficiency �even if decreased by �� of the near-

field energy transfer from surface plasmons to the semicon-
ductor substrate is caused mainly by a contribution of all
interband transitions, not restricted here to the direct �verti-
cal� ones as for ordinary photoeffect, due to the absence of
the momentum conservation constraints for nanosystems, cf.
Appendix B The strengthening of the probability transition
due to all indirect interband paths of excitations in the semi-
conductor is probably responsible for the observed experi-
mentally strong enhancement of light absorption and emis-
sion in diode systems mediated by surface plasmons in
nanoparticle surface coverings.4–9

In the balanced state of the system when the incoming
energy of light is transferred to the semiconductor via near-
field coupling, we deal with the stationary solution of driven
and damped oscillator. The driving force is the electric field
of the incident planar wave and the damping force is the
near-field energy transfer described by the 1

�3
�2� �assuming that

this dissipation channel is dominating�. The resulting red-
shifted resonance with simultaneously reduced amplitude al-
lows for the accommodation to the balance of energy transfer

to the semiconductor with incident photon energy. The am-
plitude of resonant plasmon oscillations D0��� is thus shaped

by f���=
1

���1
2−�2�2+4�2/��3

�2��2
. The extremum of redshifted reso-

nance is attained at �m=�1
�1–2��1�3

�2��−2 with correspond-
ing amplitude ��3

�2� / �2��1
2− ��3

�2��−2�. This shift is propor-
tional to 1 / ��1��3

�2��2� and scales with nanosphere radius a
similarly �diminishes with decreasing a� as in the experimen-
tal observations7 �note again that for 1 /�1

�2� the dependence
on a is opposite �grows with decreasing a��.

In order to compare with the experiment let us estimate
the photocurrent in the case of a metallically modified sur-
face in relation to the ordinary photoeffect. The photocurrent
is given by I�= �e�N�q+qm�A, where N is the number of in-
cident photons and q and qm are the probabilities of single
photon attenuation in the ordinary photoeffect,38 and in that
one enhanced due to the presence of metallic nanospheres,
i.e., of q= 2�2

3�6
e2�5/2

mp
�2���3 ���−Eg�3/2 �cf. Ref. 38� and qm given

by Eq. �27�; A=
� f

n

tn
+

� f
p

tp
is the amplification factor �� f

n�p� is the
annihilation time of both sign carriers, tn�p� is the drive time
for carriers �the time of traversing the distance between elec-
trodes��. From the above formulas, it follows that �here I
= I��qm=0�, i.e., the photocurrent without metallic modifica-
tions�

I�

I
= 1 + 7.95

� 105c0
mp

�

mn
�� 2a

100�1 nm�
���1�eV�

x
�mp

�

m
+

mn
�

m
��3

��x� ,

�28�

where c0= 4�a3

3 �
ns

H , with ns as the surface density of metallic
nanospheres, H as the semiconductor layer depth, ��x�
= x2

�x2−1�2+4x2/x1
2

1
�x−xg

, x=� /�1, x1=�3
�2��1, xg=Eg / ���1�, ��1

=2.72 eV, and mn�p� as the effective mass of conduction
band and valence band carriers �for Si, mn

�=0.19�0.98�m, and
mp

� =0.16�0.52�m, for light �heavy� carriers, band gap Eg
=1.14 eV, �=12�, m as the bare electron mass.

The results are summarized in Table II and in Fig. 2, for
various radii of the nanospheres, and reproduce well the ex-
perimental behavior reported in Ref. 7. By xm we denote the
frequencies corresponding to the maximum value of the pho-
tocurrent �i.e., to the maximum of I� / I� �the best coincidence
with the experimental data is attained at �=28
�10−3 502

�a�nm��2 �.
In Fig. 2, an estimation of normalized photocurrent, I� / I,

with respect to the wavelength is presented for three sizes of
metallic nanospheres �Au� deposited on a photoactive Si
layer, with various structure parameters �the proximity pa-
rameter �=28�10−3 502

�a�nm��2 �.
As indicated above, the relatively high value of

qm

q
�104 �40

H�nm� enables a significant growth of the efficiency of
the photoenergy transfer to the semiconductor, mediated by
surface plasmons in nanoparticles deposited on the active
layer, by increasing � or reducing H �at constant ns�. How-
ever, because of the fact that an enhancement of � easily
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induces the overdamped regime, cf. Eq. �B9�, a greater per-
spective would be thus lowering H, the layer depth �cf. Fig.
2 �left�, where a significant growth of the photocurrent with
the lowering of the active layer depth H illustrates the sur-
face character of the effect�. The overall behavior of
I� / I���=1+qm /q calculated according to the relation �28�,
and depicted in the central panel in Fig. 2, agrees quite well
with the experimental observations presented in Fig. 4 of
Ref. 7 �cf. inset in the central panel of Fig. 2�, in the position,
height, and shape of the photocurrent curves for distinct
samples �the strongest enhancement is achieved for a
=40 nm, as indicated in the central panel of Fig. 2�, though
qm /q is probably overestimated as the q denominator would
be greater for a doped real semiconductor structure but was
not taken into account in the present calculus, similarly as
surface effects; all of these would change the q denominator
as well as its energy dependence, especially for longer wave-
lengths, where the discrepancy between the theoretical
model and the experimental data is noticeable.

IV. COMMENTS AND CONCLUSIONS

The presented analysis featuring a semiclassical RPA-type
approach to collective fluctuations in large metallic nano-
spheres in jellium model deals with two types of plasmons,
surface, and volume ones. Within this approximation the
self-frequencies of surface plasmon modes are independent
of the sphere radius �similarly to the classical Mie frequency
for dipole surface oscillations�. There are, however, also sur-
face modes induced by the volume modes and the frequen-
cies of these volume-induced surface oscillations depend on
the sphere radius, similarly as the self-frequencies of the vol-
ume plasmons �given by the dispersion relation �nl

2 =�p
2�1

+xnl
2 / �kTa2��, xnl—nodes of the lth spherical Bessel func-

tion�. The e-m response of the sphere consists of both reso-
nance types, the surface, and the volume ones. It should be,
however, emphasized that the excitation of the volume
modes is limited by the nanoscale of the system resulting in
almost uniform e-m wave fields for resonant wavelength �di-

pole approximation regime, as the resonant wavelength is of
order of 500 nm�. The dynamic electric field, uniform within
the sphere, does excite the surface plasmons but not the
radius-dependent volume modes. Therefore, one can con-
clude that the experimentally observed significant depen-
dence of resonant e-m frequencies on the radius of
nanoparticles7 should be addressed to more complicated phe-
nomena than radius-dependent volume modes.

The shift of the resonance frequency �in particular, for
Mie dipole-type oscillations� for ultrasmall clusters �up to
a�2 nm� was analyzed against various quantum effects in
microscopic-type approaches, mainly of TDLDA-type12,14,16

and also within semiclassical approaches.13 All of these in-
vestigations indicate a major component of the experimen-
tally observed redshift of Mie frequency due to the quantum
spill-out effect �via reducing the density of electrons, result-
ing in factor �1− �N

Ne
for resonance frequency, where the

spill-out volume �N, i.e., the number of electrons outside the
jellium edge, was the subject of various microscopic
estimations12–14,16�. Described in that manner, the redshift of
the resonance turns out, however, to be insufficient in com-
parison to experimental data13,14,17 even for small and ultras-
mall clusters, and completely fails in comparison with ob-
served shift for nanospheres with radii �10 nm �Refs. 7, 12,
and 13� �for large nanospheres the pronounced redshift of
surface plasmon resonance sharply grows with the sphere
radius, oppositely to contribution due to spill-out in small
clusters�.

Note that the contribution to the redshift, though rather
important in the case of small clusters, was also obtained due
to the decay of plasmons for particle-hole pairs �Landau
damping�,15,17 which improved fitting with the experiment,
but only for ultrasmall clusters. Additionally, an opposite
blueshift due to a multiplasmon anharmonic contribution was
predicted.20

The quantum spill-out, Landau damping and coupling to
ion excitations �beyond the jellium model�, though important
for small clusters, are thus rather weak for large nanospheres
and contribute to resonance shift, for radius ranges above 10
nm, in a far lower amount than experimentally observed. In

FIG. 2. Normalized photocurrent I�
I ��� for various parameters �Ref. 7�: �=28�10−3 502

�a�nm��2 , �left panel� H=3 �m, �A� a=25 nm, �B� 40
nm, and �C� 50 nm, with densities �A� ns=6.6, �B� 1.6, and �C� 0.8 �108 /cm2, �central panel� H=55 �m, �A� a=19 nm, �B� 40 nm, and
�C� 50 nm, with densities �A� ns=6.6, �B� 1.6, and �C� 0.8 �108 /cm2, �right panel� H=230 �m, �A� a=25 nm, �B� 40 nm, and �C� 50 nm,
with densities �A� ns=1.5, �B� 1.5, and �C� 1.5 �108 /cm2, respectively; coincidence with the experimental data �Ref. 7� is achieved in the
central panel; the inset reproduces the experimental data �Ref. 7�.
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the present paper we argue that the radius dependent shift of
the plasmon resonance frequencies in large nanospheres is
connected with the different factor—namely, with the inter-
action of surface plasmons with other components of the
system, which leads to the damping of these oscillations. A
damping-induced shift of the resonance for driven and
damped oscillator depends on the attenuation rate, which
scales with the nanosphere radius. We have analyzed various
channels of surface plasmon damping. Inclusion of irradia-
tion losses due to Lorentz friction of oscillating electrons
gives the satisfactory explanation of the scale and radius de-
pendence of plasmon resonance in metallic spheres with the
radii �10 nm. The most effective channel for the surface
plasmon damping turns out to be the dipole-type near-field
coupling of the surface dipole plasmons with semiconductor
substrate, on which metallic nanospheres would be depos-
ited, e.g., in nanomodified diode-type systems. Due to the
nanoscale of the spheres for this coupling the momentum is
not conserved, which results in a strong enhancement of the
interband transition probability �because all indirect electron
transitions between the valence and conductivity bands in the
substrate semiconductor have to be accounted for, provided
energy conservation alone�. This agrees with the experimen-
tal data referring to a significant growth of the energy trans-
fer from surface plasmons in metallic nanoparticles to the
semiconductor substrate.

In order to include the damping of surface plasmons one
can introduce a phenomenological damping factor � �attenu-
ation time� to the oscillation semiclassical RPA equation for
electron local density fluctuations. As the form of the result-
ing equation is of the damped oscillator type, thus attenua-
tion causes a redshift in the resonance frequency, ��
=��2− 1

�2 . For driven and damped stationary oscillations, the
redshift of a resonance takes place with a maximal amplitude
at �m=��2− 2

�2 . This redshift is dependent on the sphere
radius, via the radius dependence of �.

The energy transfer to semiconductor surroundings medi-
ated by surface plasmons is so effective that it may easily
cause an overdamped regime for plasmon oscillations. This
channel is, however, reduced �typically by 3 orders in mag-
nitude� by proximity constraints. Nevertheless, for nano-
spheres deposited on the semiconductor surface, even only a
small fraction of the near-field channel �� h2

a2 �10−3, for a
�50 nm, h is an effective range of the near-field coupling�
causes a strong damping of plasmons. In the case where the
nanospheres are embedded in a semiconductor medium, the
plasmon system would have to fall in the overdamped re-
gime ��1��1�.

In the case of a small contact of the metallic nanospheres
with the semiconductor substrate or in the case of an absence
of semiconductor surroundings, a significant contribution to
plasmon attenuation is due to far-field radiation and electron
scattering effects. The radiation contributions to 1

� scale with
particle radius a as a3 �for both far- and near-field channels,
though in the latter case the proximity constraints, included
in �, would modify this dependence to the linear one� while
for scattering contribution, 1

� � 1
a . Thus, the total attenuation

rate is 1
� �Aa3+Ba+C 1

a �A ,B ,C constants�. For relatively
big spheres �a�10 nm� the radiation channels prevail while

for smaller ones the scatterings would also be important.35,36

The reported strengthening of photovoltaic effects due to
plasmonic concentrators �layer of metallic nanoparticles on
an active semiconductor surface with ns on the order of
108–1010 /cm2�, for instance, up to a 20-fold increase in pho-
tocurrent in Si with nanoparticles Ag �40 nm �twofold in-
crease�, 66 nm �eightfold�, and 108 nm �20-fold��,6 indicate
the significant role of the near-field energy transfer growing
with the sphere radius. Other observations also confirm the
strengthening role of plasmonic oscillations for the emission
and absorption phenomena in semiconductor diode systems,
e.g., ninefold increase in emission from an Si diode modified
with Ag nanoparticles of elliptical shape 120�60 nm2, and
the resonant emission shift after covering Ag nanoparticles
with a 30-nm layer of ZnS �Refs. 9 and 10� and up to 14-fold
increase in absorption with various metal nanoparticles: Ag
�12 nm �threefold��, Au �10 nm �fivefold��, and Cu �10 nm
�14-fold��.8 The influence of the dielectric coating is caused
by the surface self-oscillation sensitivity to dielectric sur-
roundings �as for metallic nanospheres embedded in a dielec-
tric medium�, �0l=�p

� l
2l+1

1
� , and for typical ��10 it gives a

strong decrease in the resonant frequencies by the factor
�0.3. The best correspondence with the experiment is at-
tained for the reported strong dependence of the extinction
features with respect to nanoparticle size �located on the sur-
face of Si�, and the shift of the resonant peak corresponding
to the change of Au nanoparticle radius, 25–50 nm �stronger
extremum for 40 nm�7 and the simultaneous enhancement of
photo-current seem to be well described by our model.

Some experimental data indicate, however, the existence
of competitive mechanisms. For instance, for active medium
TiO2, the photocurrent diminishes in a wide spectral region
�excluding the UV range� for coverings with Ag nanopar-
ticles �3–6 nm� while the same coverings on optically active
organic medium �dye solar cell� lead to a strong increase in
the photocurrent for 3-nm Ag particles but to a decrease of
photocurrent for 6-nm Ag particles.9 The competitive factors
can be linked here with the retardation of the carrier transfer,
despite plasmonic strengthening, or with the destructive
modification of a photosensitive substrate material caused by
nanoparticles that are too small �greater nanoparticles are
probably more convenient6�.

Summarizing, in the presented model nanosphere surface
plasmons couple with substrate charges �band electrons in a
substrate semiconductor� via photonless short range e-m di-
pole interaction with very quick timing �thus very
effective�—as confirmed by the time-resolved spectroscopy
measurements.7 The strong enhancement of the efficiency
results from the nanoscale-induced incommensurability,
leading to all momentum-indirect interband transitions, not
allowed for the interaction of band electrons with the original
incident planar wave photons as in an ordinary photoeffect.
The type of dipole coupling is connected here with a specific
e-m field gauge in the vicinity of the nanosphere within the
distance lower than the wavelength �thus “inside” the single
photon�, crucially distinct than for the planar wave �in the
latter case, only the vector potential can be used, which is
impossible in the former case�.34 The above schematically
described scenario qualitatively fits with the experimentally
observed behavior and elucidates the timing of the particular
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steps of the energy-transfer processes, including the mediat-
ing role of metallic nanosphere surface plasmons. The rel-
evant time rates can be estimated within the standard quan-
tum mechanical attitude of the Fermi-golden-rule type. Thus,
the above-presented RPA plasmon description supplies the
convenient and simple tool for further modeling and optimi-
zation of the metallically nanomodified solar cell structures,
toward the enhancement of their efficiency.
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APPENDIX A: CALCULATION OF TIME RATE FOR THE
FAR-FIELD DIPOLE-TYPE RADIATION OF

NANOSPHERE SURFACE PLASMONS

In order to estimate the attenuation coefficient due to far-
field radiation losses, one can consider the damping of nano-
sphere plasmons to be rapidly excited by switching off the
uniform electric field, E�t�=E0�1−��t��. The corresponding
oscillations of the local electron density can be described by
the equations

�2�
1�r,t�
�t2 +

2

��1�
��
1�r,t�

�t
=

vF
2

3
��
1�r,t� − �p

2�
1�r,t�

�A1�

for r�a and

�2�
2�r,t�
�t2 +

2

�2
�2�

��
2�r,t�
�t

= −
2
F

3m
� �3

5
ne + �
2�r,t��r̂��a + 
 − r�

− �2
F

3m
r̂ � �
2�r,t� +

�p
2

4�
r̂ �� d3r1

1

�r − r1�

����a − r1��
1�r1,t� +
1

�
��r1 − a��
2�r1,t��

−
ene

m
Er�t����a + 
 − r� �A2�

for r=a, �
→0�. For E not dependent on r, the driving force
E�t� enters the second equation only and leads to the driven
oscillator solution corresponding to the dipole surface plas-
mon oscillations �
2=Y10���q10�t�. Similarly, one can con-
clude that for nanospheres the visible light does not excite
nanosphere volume plasmons as within the dipole approxi-
mation the incident wave electric field is uniform all over the
sphere, unless the dipole approximation does not hold �i.e.,
when a���.

For E�t�=E0�1−��t�� �the rapid switching off the con-
stant electric field E0� the solution of Eq. �A2� has the form

q10�t� =�4�

3

ene

m�1
2E0�1, for t � 0,

�cos��1�t� +
sin��1�t�
�1��2

�2� �e−t/�2
�2�

, for t � 0,� �A3�

where �1�=��1
2− � 1

�2
�2� �2 and �1=�p

� 1
3� is the undamped di-

pole self-frequency.
It is easy to calculate the loss of the total energy of the

system A=E�t=0�−E�t=��, i.e., by taking into account both
the kinetic and potential energies of electron system. Only
the potential interaction energy of oscillating electrons con-
tributes, and E�t�=const.+ e2

2�a3q10
2 �t� �the time dependent

part of the energy is caused by the interaction of excited

electrons,
q10

2 �t�e2

2� 
d3r1 ,d3r2
Y10��1���a+
1−r1�Y10��2���a+
2−r2�

�r1−r2� with

1 ,
2→0, 
1�
2�. For q10 given Eq. �A3� one can find

A = E�t = 0� − E�t = �� =
e2

2�
a3�4�

3
�2� eneE0

m�1
2 �2

�A4�

since E�t�=const.+ e2

2� � 4�
3 �2a3�

eneE0

m�1
2 �2�cos �1�t+

sin �1�t

�1��2
�2� �2e−2t/�2

�2�
.

On the other hand, assuming that the damping of oscilla-
tions is caused by far-field radiation, one can calculate the
energy loss A using the Poynting vector �= c

4�E�B, ��
=1, v= c

��
�. The scalar potential of the e-m wave emitted by

the surface plasmon dipole oscillations: 
�r , t�
=eq10�t�Y10�����a+
−r� is of the retarded form,

��R,t� = 


�r,t−

�R−r�
v

�
��R−r� d3r ,

and for

R � a,��R,t� = 1
�Rv n̂ ·

�D�t−R
v �

�t ,

here n̂= R
R and the dipole moment D�t− R

v �=
r
�r , t− R
v �d3r.

In our case of surface plasmon dipole oscillations

D�t −
R

v
� = eq10�t −

R

v
�� rY10�����a + 
 − r�d3r

= �0,0,eq10�t −
R

v
��4�

3
a3� . �A5�

Similarly, for the retarded vector potential we find A�R , t�
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= 1
Rc

�D�t−R
v

�

�t , �because of �

�t =−div j�r , t�, ��R , t�

=− 1
�Rv
�n̂ ·r�div j�r , t− R

v �d3r
= 1

�Rv n̂
j�r , t− R
v �d3r for the sphere and due to div�j�n̂ ·r��

= �n̂ ·r�div j+ j · n̂, which gives
�D�t−R

v
�

�t =
j�r , t− R
v �d3r�.

Hence, for the far-field radiation of surface plasmon di-
pole oscillations we have

B = rot A = −
��

c2R
n̂ �

�2D

�t2 �A6�

and

E = −
1

c

�A

�t
− �� =

1
��

B � n̂ , �A7�

which corresponds to the planar wave, and �= n̂
4�

��
2D
�t2 �2sin2 �

�v3R2 ,
�� is the angle between D and R�. Next, taking into account
that dA

dt =�� ·ds, one can find A=
R/v
� dA

dt dt

= 2
3�v3 
R/v

� �
�2Dz�t−R/v�

�t2 �2dt. For Dz=e�4� /3a3q10 as in Eq.
�A5�, with q10 given by Eq. �A3�, one can find in this manner

A =
2

3

e2

�v3�4�

3
�2

a6� eneE0

m�1
2 �2

��1��
4�1 + � 1

�1��2
�2��2�2

� �
0

�

dt�1 + �− 1 + � 1

�1��2
�2��2�sin2 �1�t

−
2 sin �1�t cos �1�t

�1��2
�2� �e−2t/�2

�2�
. �A8�

The latter integral equals �2
�2� /4, which together with,

��1��2
�2��2+1= ��1�2

�2��2, leads to the expression

A =
e2

6�v3�4�

3
�2

a6� eneE0

m�1
2 �2

�1
4�2

�2�. �A9�

Via a comparison with Eq. �A4�, we finally find

�1�2
�2� = 3��3c

a�p
�3

. �A10�

APPENDIX B: CALCULATION OF DAMPING TIME RATE
DUE TO THE NEAR-FIELD INTERACTION OF

SURFACE PLASMONS WITH THE
SEMICONDUCTOR SUBSTRATE

For the near-field regime ���R�a , ��a�, the vector
potential has the same form as previously for the far field
since only the condition a�R was used for its derivation,34

A�R,t� = 1
Rc

�D�t−R
v �

�t .

In the near-field region the e-m field is not of planar wave
type and both vector and scalar potentials are needed to de-
scribe it. The scalar potential attains the form

��R,t� = − div
D�t−R

v �
�R

�due to the Lorentz gauge condition,34 div A=− ���
c�t �. The re-

sulting Fourier components of fields B� and E� �i.e., for
monochromatic D=D0e−i��t−R/v�� can thus be represented in
this case as34

B� =
ik
��

�D0 � n̂�� ik

R
−

1

R2�eikR �B1�

and

E� =
1

�
�D0� k2

R
+

ik

R2 −
1

R3�
+ n̂�n̂ · D0��−

k2

R
−

3ik

R2 +
3

R3��eikR, �B2�

where we use the notation for the retarded argument, i��t
− R

c �= i�t− ikR. For the near-field region kR�1, one can ne-
glect terms with 1

R and 1
R2 . Assuming also that for the near-

field eikR=1, one can thus obtain B�=0 and that E�

= 1
�R3 �3n̂�n̂ ·D0�−D0�, which corresponds to the dipole elec-

tric field.
The dipole type near-field potential can be written as

follows:

��R,t� =
1

�R2n · D0 sin��t + �� = w+ei�t + w−e−i�t,

�B3�

where w+= �w−��= e
�R2

1
2i e

i�n ·D0; one can confine Eq. �B3�
only to the w+ term, corresponding to the energy absorption
in the semiconductor. Then, according to the Fermi golden
rule, the transition probability per time unit between states
	1k1

�r , t�= �2��−3/2exp�ik1 ·r− iE1�k1�t /�� , 	2k2
�r , t�

= �2��−3/2exp�ik2 ·r− iE2�k2�t /�� �semiconductor electron
states from the valence and conduction bands, respectively�
equals

w�k1,k2� =
2�

�
�	k1�w+�k2
�2��E1�k1� − E2�k2� + ��� ,

�B4�

where 	k1�w+�k2
= 1
�2��3 
 e

�2i e
i�n ·D0

e−i�k1−k2�·R

R2 d3R. Taking the z
axis along the vector q=k2−k1, then q ·R=qR cos �1,
n ·D0=D0�cos � cos �1+sin � sin �1 cos �1� �� is an
angle between D0 and q�. Hence,

	k1�w+�k2
 = e
�2��32i�

ei�D0
0
�dR
0

�sin �1d�1
0
2�d�1

��cos � cos �1

+ sin � sin �1 cos �1�eiqR cos �1

=
eD0

�2��2�
ei� cos �

q ,

�as 
0
�cos �1 sin �1d�1eix cos �1 =−i d

dx2 sin x
x � and the prob-

ability of transition w�k1 ,k2�=
e2D0

2

�2��3��2
cos2 �

q2 ��E1�k1�−E2�k2�
+���. In order to include all possible initial and final states
in the semiconductor, the summation with respect to k1 and
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k2 has to be performed �including filling factors f�k1��1 and
f�k2��0, as well as the absorption and emission of energy�.
In the result, we arrive with the total transition probability in

the semiconductor per time unit �w�

d3k1

4�3 

d3k2

4�3 w�k1 ,k2�
caused by dipole surface plasmon oscillations on the single
nanosphere.

Let us emphasize that due to the absence of the momen-
tum conservation for the near-field dipole coupling in the
vicinity of the nanosphere, all interband transitions contrib-
ute, not only direct ones �as for the interaction with the pla-
nar wave�. This results in the strong enhancement of the
transition probability for the near-field coupling in compari-
son to the photon �planar waves� attenuation rate in a semi-
conductor in an ordinary photoeffect.

For the simplest model band structure, E1�k1�−E2�k2�
+��=x+y−�, where x=

�2k1
2

2mp
� , x=

�2k2
2

2mn
� , and �=��−Eg �Eg is

the semiconductor band gap�, the integration over the wave
vectors gives the formula for the total probability of the tran-
sition

�w =
e2D0

2��mp
�mn

�

3�4�3�2�5�2 ���1 − Eg� , �B5�

where �=
mp

�mn
�

mp
�+mn

� .
Assuming now that the dipole plasmon oscillations corre-

spond to the damped oscillations that were excited by the
rapid switching off of the uniform electric field �as in the
Appendix A�, E�t�=E0�1−��t��, with the dipole-type solu-
tion for electron distribution given by Eq. �A3�, we have

D�t� = �0,0,D0e−t/�3
�2�

cos��1�t�� �B6�

with

D0 =
e2ne

m�1
2E0

4�

3
a3 �B7�

in comparison to Eq. �A3� we have neglected here the second

term
sin��1�t�
�1��3

�2� for �3
�2��1� well greater than unity.

One can now estimate the total energy transfer to the
semiconductor �assuming that the dominant channel of the
dissipation is the near-field interaction with the semiconduc-
tor substrate and neglecting here the small shift of �1� due to
dissipation�

A = ��
0

�

�w��1dt

= ���1�w�3
�2�/2

= �
�e6ne

2E0
2a6�3

�2��mn
�mp

���1���1 − Eg�
6�3�2�2m2�1

4�5�2 , �B8�

where � accounts for the proximity constraints that reduce
the near-field contact of the sphere with the semiconductor
medium; for the case of nanospheres deposited on the semi-
conductor layer surface �� h2

a2 �10−3, for a�50 nm �h is an
effective range of the near-field coupling� while for the nano-
spheres entirely embedded in the semiconductor surround-
ings � would enhance significantly. Comparing the value
given by the formula �B8� with the energy loss given by Eq.
�A4� one can find

1

�3
�2��1

= �
e2a3��mn

�mp
����1 − Eg�

48�6h�4�
. �B9�

For nanospheres of Au deposited on the Si layer we obtain

1

�3
�2��1

= 0.00071�� a

�1 nm��
3 �

m

�mn
�mp

�

m
, �B10�

for light �heavy� carriers in Si, mn=0.19�0.98�m, mp
=0.16�0.52�m, and Eg=1.14 eV, �=12, and ��1=2.72 eV.
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